Upregulation of prostacyclin synthesis-related gene expression by shear stress in vascular endothelial cells.

نویسندگان

  • K Okahara
  • B Sun
  • J Kambayashi
چکیده

Prostacyclin (prostaglandin I2, PGI2) has a variety of functions, including inhibition of smooth muscle cell proliferation, vasodilation, and antiplatelet aggregation. PGI2 production in endothelial cells has been reported to increase biphasically after shear loading, but the underlying mechanism is not well understood. To clarify the mechanism for the second phase of PGI2 upregulation, we examined the gene expression of the enzymes involved in PGI2 production in human umbilical vein endothelial cells (HUVECs) after shear-stress (24 dyne/cm2) loading. The production of 6-keto-PGF1alpha, a stable metabolite of PGI2, increased time-dependently under shear stress. The arachidonic acid liberation from membrane phospholipids in HUVECs after 12 hours of shear loading was increased significantly compared with the static condition. No change was observed for cytosolic phospholipase A2 expression, as detected by reverse transcription-polymerase chain reaction and Western blotting. Cyclooxygenase (COX)-1 mRNA increased after 1 hour of shear loading, and the increase lasted for 12 hours, the longest time tested, whereas COX-2 mRNA increased after 1 hour of shear loading and peaked at 6 hours. An increase of COX-1 expression was detected at 12 hours of shear loading by Western blotting. No expression of COX-2 was detected in the static control, but induced expression was observed at 6 hours after shear loading. PGI2 synthase was also found to be upregulated. These results suggest that the elevated PGI2 production by shear stress is mediated by increased arachidonic acid release and a combination of increased expression of COXs and PGI2 synthase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability

Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...

متن کامل

Effect of different concentrations of leukemia inhibitory factor on gene expression of vascular endothelial growth factor-A in trophoblast Tumor Cell Line

Background: Several studies have shown that leukemia inhibitory factor (LIF) is one of the most important cytokinesparticipating in the process of embryo implantation and pregnancy, while, the role of this factor on vascular endothelialfactor-A (VEGF-A), as one of the most important angiogenic factor, has not been fully investigated yet. The aimof this study was to evaluate th...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Asynchronous shear stress and circumferential strain reduces endothelial NO synthase and cyclooxygenase-2 but induces endothelin-1 gene expression in endothelial cells.

OBJECTIVE Endothelium-derived vasoactive agents NO, endothelin-1 (ET-1), and prostacyclin (PGI2) not only regulate vascular tone but also influence atherogenic processes, including smooth muscle migration and proliferation, as well as monocyte and platelet adhesion. Complex hemodynamics characterized by the temporal phase angle between mechanical factors circumferential strain and wall shear st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 18 12  شماره 

صفحات  -

تاریخ انتشار 1998